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CONVERGENCE OF AN ENERGY-PRESERVING SCHEME 
FOR THE ZAKHAROV EQUATIONS IN ONE SPACE DIMENSION 

R. T. GLASSEY 

ABSTRACT. An energy-preserving, linearly implicit finite difference scheme is 
presented for approximating solutions to the periodic Cauchy problem for the 
one-dimensional Zakharov system of two nonlinear partial differential equa- 
tions. First-order convergence estimates are obtained in a standard "energy" 
norm in terms of the initial errors and the usual discretization errors. 

1. INTRODUCTION 

In [ 1] Zakharov introduced a system of equations to model the propagation 
of Langmuir waves in a plasma. If we denote by N(x, t) (x E R, t > 0) the 
deviation of the ion density from its equilibrium value, and by E(x, t) the 
envelope of the high-frequency electric field, then the one-dimensional system 
takes the form 

(ZS.E) iEt + Exx = NE, 

(ZS.N) Ntt - Nxx = d2(IE12). 

We solve on {x E R, t > 0} and supplement (ZS) by prescribing initial values 
for E, N, and Nt: 

(1) E(x,O)=EO(x), N(x,O)=NO(x), Nt(x,O)=N1(x). 

Most of the interest to date in (ZS) stems from two particular features. Firstly, 
(ZS) admits solitary wave solutions [3]. Secondly, in three space dimensions, 
(ZS) was derived to model the collapse of caverns (cf. [11]). An intriguing and 
still unresolved question remains in three dimensions as to whether smooth data 
can generate a solution which becomes singular in finite time. 

As is well known, (ZS) possesses the two formal invariants 

(2) IE(x, t)I2 dx = JIE(x, 0)12 dx, 

(3) j| (1EX2 + I 
(IVI2 + N2) + NIEI2) dx = const, 

Received July 17, 1990; revised November 20, 1990. 
1991 Mathematics Subject Classification. Primary 65M12, 35L70. 
Research supported in part by NSF grant DMS 8721721. 

i 1992 American Mathematical Society 
0025-5718/92 $1.00 + $.25 per page 

83 



84 R. T. GLASSEY 

where v is given by 

(4) v = -Ux, uXX = Nt. 

We know that these are sufficient for global weak existence (cf. [9]). Also 
from [9] the same conclusion holds in three dimensions under an additional 
"smallness" condition. Moreover, higher-order estimates from [9] guarantee 
the existence of a smooth solution in one dimension provided smooth data are 
prescribed. 

It is such a smooth solution of (ZS) with periodic boundary conditions which 
we approximate numerically in this paper. A spectral method is used in [5]; 
while practical results seem very good, the convergence issue is not rigorously 
addressed. Our algorithm uses an approximation of "Crank-Nicolson" type on 
the linear parts of (ZS). We approximate the solution over a fixed but arbitrary 
time interval 0 < t < T. 

The nonlinear terms in (ZS) are then approximated in such a way that: 
(i) the discrete L2-norm (over a period) of the approximation to E is 

conserved; and 
(ii) a discrete analogue of the total energy is conserved. 

This discrete energy will be shown to be bounded below by a positive definite 
form. The scheme is linearly implicit and involves only two periodic tridiag- 
onal solvers to advance one step in time. We obtain first-order convergence 
estimates in the natural "energy norm" in terms of initial errors and standard 
discretization errors. 

In the references we list several papers where conservative schemes have been 
employed [2, 4, 6, 8]. Related results are to be found in [1, 10]. 

The standard summation by parts formula is 
J 

E vj(uj+l - 2uj + uj_1) = VJ+i(UJ+i - Uj) - VI(ui - UO) 
j=1 

- (Vj+I - Vj)(uj+I - uj). 
j=1 

The "summed" terms cancel whenever {Uk}, {Vk} are J-periodic mesh func- 
tions. 

Although [9] treats the Cauchy problem on all of space, the methods given 
there (i.e., Galerkin) could be extended to deal with the periodic case studied 
here. Constants depending on T and the Cauchy data are written CT , while 
constants depending only on the data are generically written as c. These will 
change from line to line without explicit mention. 

This scheme has been implemented; details will appear elsewhere. 

2. THE FINITE DIFFERENCE SCHEME 

Let T > 0 be arbitrary; we will approximate the solution to the periodic 
Cauchy problem for (ZS) over the time interval 0 < t < T. We first state 
hypotheses on the Cauchy data and the solution: 

(HO) The Cauchy data 

E(x, 0) = EO(x), N(x, 0) = NO(x), Nt(x, 0) = N1 (x) 
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are COO and L-periodic. Moreover, 
L 

j N1(x)dx = 0, 

J 

EN1(jh) =0 foranyh >Owith Jh=L. 
j=1 

(HE) The periodic Cauchy problem possesses a unique smooth global solu- 
tion. 

In order to write the scheme, we define 
(5') Uk-AX 1(Uk+l -Uk), 

(5"1) 52Uk AX-2 (Uk+l - 2Uk + Uk-1), 

(6) At At 
x' ~AX2 

with At, Ax > 0. Now for J a positive integer we choose Ax = jAt > 0 
such that 
(7) nAt < T 
and define tl = lAt, x= jAx (1 =0, ...,n; j = 0,... J). 

Our scheme is 

(.) i kfi k + 2- Ekn + 22Ekn+l = (Nn + Nn+l)(Ekn + Ek+l)X (8.E) +E~ k k32fl+ 

At1 + 3E+n -1k kk N ~2 2k 
(8.N) -k 2Nk + N/ _12Nfn+1 - l32n-l = 1 2(|En12) 

At2 kk 3(E1) 
In both relations k = 1, ... , J, n > 0 in the first and n > 1 in the second. 
Here we take Ekn, Nkn to be J-periodic mesh functions, i.e., 

Ekn = Ejn, Nkn = Njn if k_=j (mod J). 
The scheme is supplemented with the initial values 

(9) Ek?= EO(xk), 

(10) N- = NO (xk ), Nk, = N2 + AtN1 (xk). 

We claim that the scheme is uniquely solvable: multiplying (8.N) by At2, we 
see that the coefficient matrix for the unknown {Nkn+ }J=l of order J x J, is 

-1 +A2 _A2 ? ... -U2 2~ 
- 0 

(11) AxN=[_A2 1 +A2 KA2 ... 

-.T 0 ... 2 
1 + A2, 

which is invertible by Gerschgorin for any A > 0. The coefficient matrix for 
the unknown {Ekn+ }J=l has the form 
(12) iI - AE, 

where both matrices are square and of order J x J. 
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AE is symmetric and has the form 

(AE)11 -E 0 ... _-8 

( 

It 2 2 
(13) AE = 2 (AE)22 -4 ... o 

-< _! 0 ... -E (AE)JJ) 

where 
At (n+N+) (14) (AE)kk = /1+ 4 (Nk + Nk21). 

Since AE has only real eigenvalues, iI - AE is invertible. Thus the scheme is 
uniquely solvable at each time step. Indeed, putting n = 0 in (8.E), we can 
solve for {Ek}, since NkQ, Nk,, Ek? are known from the data. Putting n = 1 
in (8.N), we can then solve for {Nk2} and, using {Nk2}, we can put n = 1 in 
(8.E) and solve for {Ek,}, etc. 

We summarize with 

Lemma 1. Assume the data satisfy (HO). Then the scheme (8.E), (8.N) is 
uniquely solvable at each time step. 

Lemma 2. Let the data satisfy (HO). Define {Iu} by 

un, - 2u% + un Nn+ - Nn 
k+l 2Uk +Uk_ I Nk A k =1,...,J-1, 

Uo = Uj = 0. 
Extend {ju} by defining 

u%=un if k j (mod J). 

Then 
J- 1 nj~. _1 

u =-Ax E G(xk, xj) At 
j=1 

where 
{ ( 1 - L) 0 < x < X < L. G(x, y)= L (1Y), OxyL 

Proof. The proof that the given representation is indeed a solution is a straight- 
forward computation and is omitted. The only issue is one of compatibility. 
Summing the definition of u%, we see that it is required that 

J 

*E=(N1 

- Nn) = 
0. k=1 

When n = 0, this is true by hypotheses (HO) and (10). Using (8.N), we 
can write 

Nn+1 Nn =Nn _Nn-I + A2 
6s2(Nkn+1 + Nkn1 I +2Ekn i2). 

Using induction, we sum both sides over k. The sum of the first two terms 
on the right vanishes by the induction hypothesis; the sum of the remaining 
terms vanishes by periodicity. o 
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Theorem 1. Let the data satisfy (HO). Then the scheme (8) possesses the follow- 
ing two invariants: 

(a) 
Z IEknI2AX = const (nAt < T). 
k 

(b) Define un as in Lemma 2, so that 32u% = (Nkn+l - Nkn)/At. Then 

n+l =AExZ [I3Ek+ |2 + I (a3un)2 + I{ (Nn)2 + (Nn+1)21 

k 

I a (Nn + Nn+l) iEkn+l2] = cost 

for nAt < T. The sums run over 1 < k < J. 

Thus the discrete L2-norm of En over a period is conserved, and the form 
of Fdn is similar to that for the exact solution in (2), (3). 

We show that Jdn is bounded below by a positive definite form. For this 
purpose, we put 

(15) IIEn 112= IEkn 122x 
k 

(16) |IE~nI12=Z I5EnI2AX, 
k 

with similar quantities for Nn . We make note of the discrete Sobolev inequality 

(17) sup u ? cIIuII|12II6uII 12 
k 

valid for periodic mesh functions {Uk}. Indeed, denoting the Fourier coeffi- 
cients of the mesh function u by {cm}, we write 

IUkI _ c ( E + z. ) 

jmj<M jmj>M 

< cM112 ( Cm2) + CM-(112) (Z ImI2IcmI2) 

and optimize on M. 
The last term 2 in ?dn is estimable by 

I ?2 Z IN2IIE2n+l 12Ax + 
I z IN+1IEn+l 2,IAx 

k k 

Z% ((N)2 + (N2+1)2)AX + 1 n+1Ej4Ax 
k k 

for any e > 0. Choosing e = 2 we get the bound 

j2'I 8 ^ ZAX((Nn)2 + (Nn+1)2) + In+E114 
k 
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By the Sobolev inequality (17) and part (a) of the theorem, 

Jn+1 114 < cJJEn+1 112 JJEn+1 112 < cJJEn+1 1120 < cll&En+l 112 

< 1 I6En+1 f2 + C. 
1 

This gives us 

Lemma 3. There is a constant c, depending only on the data, such that the 
solution of the discrete scheme (8.E), (8.N) satisfies 

Ax[lEk+' 12 + (Ek5+E1I2 + (5Un)2 + (Nn)2 + (Nn+1)2] < C 

k 

and hence SUPk JEknI < c. 

Proof of Theorem 1. As is well known, part (a) is obtained by multiplying (8.E) 
by Ek+j + ik , summing over k, k - 1,..., J, and taking the imaginary 
part. 

In order to verify (b), we multiply (8.E) by Ek+ - E and sum on k. 
Adding this to its conjugate, we obtain 

1 ~ ~ ~ ~ ~ ~ n1- 
(18) In + In+i = L(Nkn+I + Nkn) * 2 Re(Ekn + + Ekn)(Ek -Ek), 

k 

where 

Im = AX2 ReZ(E k -Ek)(Ekm+2Ek+Em) (m= n,n+ 1). 
k 

The right side of (18) equals 

(19) 2 (IEkn+12 -_ Ekn2)(Nn+ I + Nn). 
k 

Summing by parts, we get for the left side of (18) 

(20) In + In+i =-A ZE - | Ek12 + aE |ZEkn+i-Ekn 12. 
k k 

Thus (19), (20) yield the identity 

(21) -Zk5osEkn+1I2 + ZI15Ekn 12 - 2Z(IEkn+1I2 -_ Ek2)(Nn+ 
I + Nn). 

k k k 

We obtain the contribution from {Nkn} by recalling from Lemma 2 that 

(2n - uk1 - 2un + u1 Nn+k -Nn (22) 3u~ ~~ AjX2 At 

and by multiplying (8.N) by (uk + ku7) and then summing on k. There 
results 
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where 

I Nkn ( - 2Nkn + Nkn-) (Un + un-1) 
2k At2k k 

II E(2k+ k )[yn~l _2Nk+ +Nk_, - 2N~' +N k] k 

III 1 E (u% + u ) [IEZ +12 - 2NE212 + jEN.1 j -] k 

Term III is summed by parts: 

I2Ax2 E [(u~ + U )-_(Un + Un-')] [IEk+112_-Ek2l2] 

(24) = - 2AxZ [u + u%'- I-_ lf ] jEjk| 
k 

+ 2I2 E [u~n + Un-1 _ n _ n- IEn 12 
k 

where we have shifted k -- k - 1 to obtain the first sum. Thus, by (22), 

I=2Ax2 ZI Ek 12 [(un+I -2u% + u_ )+ (u%1 -2un%' + unI1)] 
k 

1 2 NP~ -N2 N2 -Nt 
(25) =2 IEknl [ A2k Atk + k 

=2At Z IEknl2(Nn+l _ N-n1). k 

To evaluate I, we note that by (22) 

62_n 

_ 2Un-= Nk 
_ 

N 
k k ) 

__k_____+ 

Uk Uk At ( At )At 

Thus, 

I= 2At Z(un + un 1) [32un -2u 1] 
k 

and, summing this by parts, we get 

(26) I =-- 1(3u)2 + j: (cUnu%)2. 
2At k 2 k 
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Summing II now by parts, we find 

I1= 4 E Z U [(u+ +~un-4) -nu + unj 1) 1AX E k 1 tk+1 )(Uk + k) 

k 

[(N + +1 - Nn+1) + (N -n-11- 1)] 

= -4AC2 Z [Uk + uk- Iu% - 1Ukj] [N2 + Nj1] 
k 

1 k +Un1 nu-1] [N+1 n-1], + 4^2 Z [uN + - +N 
k 

where we have again shifted k -, k - 1 to get the first sum. Thus, by (22), 
II = 48X2 (Nk+l + Nn1) [(Un+ - 2U + Ukl) + (Unil - 2Un- I+ Un-i)] 

= (Nn+l + Nn-1) [Nk k + N- Nk 1 k k [At + At ] 
kL 

k[(Nkn+)2 _ (Nkn1)2]. 

Therefore, equation (23) yields 

-2/t j: (5Un) 2-1t:( Nkn+1 )2 
(27) ~ 1- Z(1 (U-)24 t yn k k 

(27) =- k- Z(N 1)2 - 
k 

k k 

+ 2 E [l~kn 12Nnl _Nn1)+EklNn+l _ n12-En|). Nnl+ k) 

+ Z k 
'Ak 

Now multiply this by At and add the result to (21) to get 

I ZU)2 - 1(~2-ZIE~I 

(28)l = -dn Z(und) -ec td Z= ~ ) -d Zn enryiscnerve. (29) (Un _4 k(n = 2E1xi, )Ekn,1i 

k k k k 

[~I EknlI2(Nn~l 
+ 

Nnk1) 
- 

+ lEkI2(N2 +l)N~ n] 

k k 

Therefore, when we define edn+1 as in part (b) of Theorem 1, (28) implies 
~n+1 = O'd and hence O'd = Fd and energy is conserved.0 

In order to state the main theorem, we define the errors by 
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Here, En X n are computed from the scheme (8.E), (8.N) for nAt < T 1 < 
_ A k< J. 

Lemma 4. Let the data satisfy (HO). Define {Uk,} by 

(31) Ax2 At k = 1, ... J-l, 
U0 = UJ =O. 

Extend { Ukn} by defining 

Ukn= Ujn if k=j mod J. 

Then 
1 J-1 1 n 

Uki =-AX L G(xk, xj) I At 
j=1 

where 

(32) G(xy)= { x( -L), 0<x<y<L, 
y(1 - ), 0 <?y < x < L. 

Proof. The actual computation showing that the given representation is a solu- 
tion is easy and is omitted. As in Lemma 2, there remains the compatibility 
question. Using the definition (30) of in, we have 

62n= At-1 [Nxtn+1) - Nn+1-~k tn) + Nkn] =A1[N(xk, t k1 - - N(xk, t k+N~ 

= -62un +At-F[N(xk, tn+) - N(xk, tn)]. 

Therefore, as in Lemma 2, we require that 
J 

S ZE[N(xk, tn+1) - N(Xk , tnA)] = 0. 
k=1 

We expand N(x, t) in a Fourier series with Fourier coefficients {cm}: 

N(x, t) = Zcm, (t) exp (2irL7rx) 

Thus, co(t) is proportional to JrN(x, t) dx. Integrating (ZS.N) over a 
period, we see that this integral is a linear function of t. In fact, co(t) is 
constant in time in view of (HO). Now we write 

J J irk 

Z N(xk, t) = Zcm(t) exp( Lrxk) 
k=1 m k=1 

and evaluate the inner sum explicitly. Using xk = kAx = kL/J, we see that 
this sum over k vanishes unless m = 0, in which case 

J 

Z N(xk , t) = Jco(t). 
k=1 

Hence S = 0 as desired. 0 

The norms are defined, e.g., as Ijen1I2 = I=1 lekne 2Ax, etc. 
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Theorem 2. Let T > 0; assume (HE) and that the data satisfy (HO). Given 
any positive integer J, let JAx = L and choose At = Ax. Let Ekn, Nkn be 
computed from the scheme (8.E), (8.N), (9), (10) for nAt < T. Define 

(33) 8 = I [Ijen+1 1I2 + IIben+1 112 + 113 Un 112 + a(II n+112 + II n 112)]. 

(Thus, 8n is the (square of the) "energy norm" of the errors.) 
Then there exists a constant CT depending only on the data and T, with the 

property that for Ax sufficiently small, we have 

g'n < CT [O + AX2]. 

Moreover, SO = O(AX2), and hence 

gn <? CTAX2 as Ax -- 0. 

The proof of Theorem 2 will be given in the next section. 

Remark. The choice At = Ax allows us to easily combine several estimates. It 
is seen from the proof that the same estimates can be obtained provided At is 
bounded both above and below by a constant times Ax. 

3. CONVERGENCE ESTIMATES, PROOF OF THE MAIN THEOREM 

We begin by defining the standard discretization errors 

T= at(E(xk, tn+l) - E(Xk, tn)) 

+ 2zx2 (E(xk+l , tn) - 2E(xk, tn) + E(xk _l, tn)) 

+ 2Ax2 (E(xk+l, tn+1) - 2E(xk, tn 1) + E(xk-l, tn 1)) 

- f(N(xk, tn)+ N(xk, tn+l))(E(xk, tn)+E(xk, tn+1)) 

and 

n= (N(xk, tn+1) - 2N(xk, tn) + N(xk, tn-1)) 

()-2x2 (N(xk+ I, tn+ ) - 2N(xk, tn+ 1) + N(xk..I ,IttI )) 

-2Ax2 (N(xk+l , tn-) - 2N(xk, tn1) + N(xk-1, t, )) 

- 2 (IE(Xk+l, tn)12 - 21E(xk, tn)12 + IE(Xk-1) tn),2). 

As usual, these measure the amount by which the exact solutions fail to satisfy 
the approximate equations. 

Recall that E, N are smooth solutions. 

Lemma5. We have IT+IoI =kn O(At2+Ax2) as Ax,At --. 
Proof. By Taylor's theorem and (ZS.E) we can write the first three terms T3 
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in Tk as 

T3 = i (Xkx tn) + 2AtEtt(xk , flkn)) + I (EXx(Xk, tn) + O(AX2)) 

+ (Exx(Xk, tn+1) + O(AX2)) (tn < flkn < tn+1) 

= iEt(Xk, tn) + 2 tEtt(Xk, fln) + O(Ax2) 

+ [N(xk, tn)E(xk, tn) - iEt(xk, tn)] 

+ 2 [N(xk, tn+l)E(xk, tn+i) - iEt (Xk tn+l)] 

N(xk . tn )E (xk . tn ) + N(Xk . tn ) E(Xk tn ) + o(AiX2 ) 

2 

+ 2 Ett(xkn) + 2I [Et(Xk tn) - Et(xk, tn+l)] 

_ N(xk, tn)E(xk, tn) + N(xk , tn+ )E(xk, t+1) + O(At2 + Ax2). 
2 

Now the result for Tn will follow if 
1 

(N(Xk, tn)E(Xk . tn) + N(xk , tn+I)E(Xk, tn+l)) 

- (N(xk , tn) + N(xk, tn+1)) (E(xk, tn) + E(xk, tn+1)) 

=O(At2 + Ax2). 

Simple algebra shows that this expression equals 
4(E(Xk, tn+1) -E(Xk, tn))(N(xk, tn+1) - N(xk, 0t)), 

and hence is O(At2). 
As for I , we use Taylor's theorem again to write 

(kn = (Ntt (Xk, t) + O(At2)) )-2 (NXX_(XI tn+) + O(Ax2)) 
tt~x(xkt) ( 2Nxx\X 

- (NXX (Xk tn-1) + O(AX2 )) - ( 2 |E(Xk tn)12 + O(AX2)) 

The result follows from (ZS.N), since 

NXX(Xk 0tn) -(NXX(xk, t 1)A+NXX(xk tn )) = O(At2). ] 

Recall that the errors are defined by (29), (30). In order to obtain the error 
equations we subtract (8.E) from the definition (34) Of Tn to get 

ie_+_-e 1 -2n e2 

kAt k+ 6 2ekn+ 2 
ekn 

+ 

= rk + 4-N(xk , tn) + N(Xk, tn+l)][E(xk, tn) + E(xk, tn+1)] 

( 3 6 ) I[NY? + Nn+'][Ekn + Ekn+'] 

= + + + t1n+l)(E(xk, tn) + E(Xk, tn+)) 

+ (Nk + Nk )(ek + ek+)I. 
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Subtracting (8.N) from (35), the definition of 7kn, we get similarly 

-k k2 k + _ 2 n+1 - 1 2 n-i 

(37) A22 k 2 1k 

= 4kn + 62 (IE(xk , tn)12 - IEk /2). 

In a sequence of lemmas we will derive energy estimates on e and . 

Lemma 6 (L2-estimate of e). There are constants c, CT such that for Ax, At 
sufficiently small, 

lien+1 1122 < (1 + cAt) Ilejn112 + CT(At2 + AX2)2At 

+ cAt (i|t~n+112 + || n l2) 

Proof. As in Theorem 1(a), we multiply (36) by ekn+ + ekn, sum on k, and take 
the imaginary part to get 
(38) I + II = III + IV, 
where 

I = t ReZ(en+1 - ek)(ek+1 + ek) = 1 (Ien~1I2 - 1enI2) 
k k 

II = Im (en+1 + ekn)(2ekn+' + 62ek), 
k 

III = Im , (ekn+ 
I + ekn) Tn 

k 

IV = 
1 

Im (ekn+1 + ekn)[(qn + kn+l)(E(xk , tn) + E(xk, tn+1))], 
k 

the last simplifying since N is real. All sums are taken over indices k with 
1< k < J. 

Term I is as desired. For III, we have from Lemma 5 

|I|< C 1? (Iekn+ 112 + Iekn 12) + C Z: |T 12 
k k 

< cAx1 (Ile n+1 112 + lien 112) + CT(At2 + Ax2)2 . J 
and IV is easily estimable by 

jIVI < c sup IE(x, t)l . (1e +I + kek/)Ax1I2. (jk+lI + knI)AxIl2 
x,t<T k Ax 

< cAx-1[Ile n+112 + Ile nj112 + In+ 112 + t1 
n 

112]. 

As before, term II vanishes upon summation by parts. Now we multiply (38) 
by AtAx and use the bounds derived above to get 

(39 n+je 112 < ?ie n12 + cAt(jlen+1 112 + lien112) + CT(At2 + AX2)2 . jAtAX 

+ cAt(Ile'n+112 + lien 112 + 1 In+1 112 + 11 n112). 

Thus, we have 

(40) (1 - cAt)IIen+ 112 < (1 + cAt)IleIn112 + CT(At2 + AX2)2At 

+ cAt(I jqn+ 1 12 + 11 jn 112) 
and the result follows. O 
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When estimating the energy, we will need bounds on the discrete potentials 
un from Lemma 2 and Ukn from Lemma 4. 

Lemma 7. There is a constant c depending only on the data such that 

sup unI ?c. 
k 

Proof. We write, using the boundary condition un = 0, 

k k 

IunI= Z(u -uj U,) = AxZEJju ?I< 1un II2(JVAx) 1, 
j=1 j=1 

and this is bounded by Lemma 3 and the definition of J. 0 

Lemma 8. Let Ukn be defined as in Lemma 4. There is a constant c such that 

sup I UnI < c(gn)1/2. 
k 

Proof. The proof is the same as that of Lemma 7, but in the last step we use 
the definition of En from Theorem 2. 0 

Lemma 9 (Energy of e ). Let h = At = Ax, and define 

I = 2ReZE(E(xk, t)+ E(xk, tn+l)) (n+ l + qn)ekn+l 
k 

IIIn = 1 Z(Nn+l + Nkn)Ien+12. 

k 

Then 
I 
IIenII2 + h(IIn-1 + 1In-1) - (1 IIen+ 112 + h(,In + IIIn)) 

= Q[h(gn + gn-1) + h3]. 

Proof. As in Theorem 1(b), we multiply (36) by (ekn+l - ekn), sum over k, 
k = 1, ... , J, add the result to its conjugate, and take the real part. There 
results the identity 

Io = I+II+III, 

where 

Io= ReZ(en+ - eI-)(n2e n + 52 n+ 
k 

|II = 2 Re E Tn (ekn+ I k) 
k 

< CTh2j12h-1J2(IIen+1 112 + Ilen 112) < CTh(gn + g )n-l2 

2 eZ(1 + il (E(xk, tn) + E(xk, tn+I)) (ekn+1 _ekn)X 
k 

III = 2 Z:(Nkn + Nk2+1)(Iek~I eI) 
k 
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We sum Io by parts to get 

(41) Io = _ E Iekn I2I _ E Z Ien+ 1 12. 
2k 2k 

Next, we rewrite term III as 

-= 2 [(Nn+l + Nn)le2n+12 - (N2 + Nkn 1)IeZI2 + (Nn I- Nkn+2)Ien 12] 
k 

-IIIn _ IIIn- I + 1 E(Nkn - 1 Nkn+ l) e en 12, - - 

~~~2 Z(k 
k 

where 

(42) IIn = I In (Nn+ + Nn)lIen+12. 
k 

Recall from the definition (Lemma 2) of un that 
32n 1 - NJn 

Uk kk 6S2un = k 

Thus, 

2(Un + u-1) = k k k k ~~h 
and therefore 

III = IIIn _ IIIn- I lekni 2352(un + un-1 
k 

We sum by parts to get for the last term the bound 

0 (h EI ekn|IIekn|I(I6uI + I3un71|)) = O(IIen I||KIIen 112( IIun ||2 +IIun 1112)) 

k= k 
= (Ijlen II 1/2 11 ,6en 11 3/2) 

where we have used Lemma 3. Hence, 

(43) III = IIIn _ IIIn-I + O(n-l) 

Consider now term II. For brevity we set 

(44) Wkn =E(Xk, tn ) + E(xk . tn+1l) 

so that 
W-w 'n-1 = E(xk, tn+1) - E(Xk, tn-1) = O(h). 

We write term II as 

II I Re 1:( n+1 + n) WZn (egkn+1 -_ q) 
k 

=~~~ 2 ewnk~en+1 - Ren 
Wn-1 

nekn 
I Re 1(Wkn Wkn I)nnekn = ~~ReZ nk + - 'Re k k 

k k k 

+~ ~~ 2R kne-kn+1-R Wkn n+1 -n. + kRe E -ke kw k ek 
k k 
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Now we add and subtract the expression 

W R n-1 n-l en ReEw1?'ek 
k 

and define 

(45) I 1 = ReEek + 2 Z kwkt 
k k 

Then, using Lemma 4, we can write II as 

II = IIn _ IIn-1 + O(On-fl) 

I 
ReEek[(Wn- Wkn1),7n+1 +wn-1(?(n+1 _ n-1)] 

(46) = IIn _ IIn-I + O(fn-fl) + Q((O' n-l)l/2 (gn)l1/2) 

-~Re~h~Wn-IC2(Un + Un71). 2 Re E? hekn Wkn Uk + kn- 
k 

We sum the last term here once by parts; it equals 

2 Re Z h35(Ukn + Un1)(w7nj13ekn + ekn+,1wn1) 
k 

= 0[(ll1Un 112 + II6Un-I II2)(ljE(tn-l1)l OOIjen112 + IlEx(tn-1)lIlOOlenll2)] 

= Q((gn + nfl1)). 

Using these estimates in (46), we have 

(47) II = IIn _ IIn-I + O[gn + gn-l]j 

Finally, we multiply the relation 

Io = I + II + III 

by h and use the estimates for each of these terms derived above to get 

(48) 2IIce 11 - 2_Iken+ I 
112 = 0(h3) + O[h (gn + gn-l)] 

+ IInh + IIInh - IIn-1h - IIIn-lh, 

or 

1I11enII2 + h(IIn-1 + IIIn-1) - ( IIen+1 112 + h(IIn + IIIn)) 

( Q(h(gn + gn-l) + h3) 

and this is the statement of Lemma 9. o 
Lemma 10 (i-energy). Let h = At = Ax. Then 

I IpUn 112 _ I (II n+1II2 + In'I2) + lIkUn-l 112 + I(11'I112 + 11n1 112) 
= 0(h5 + h(gn + gn-l)) 

Proof. Recall from Lemma 4 the relation 

2U= U+l -2Ukn + Uk _- n+1 - 
k h2 ~~~~~h 
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We multiply the i-equation (37) by 1(Uk' + Uk-1) and sum over k to get the 
identity 

(50) I1-I2-I3=I4+I5, 

where 

= 1 (kn + Un-I) (+k - + Qk1) 
k 

'2 = 4Z(Un+ U+n-I)C2nn1, 
k 

13 = Z(Un + Un-I)C52nn+I 
k 

14 1 Uk(Uk Uk O(h(gn+8n-1)112) (by Lemma 8) 
k 

5= 2 (Un + Un-I)C32{IE(xk , tn)I2 - IE1I2}. 
k 

We sum I2 + I3 by parts, with the result 

(51) I2 + I3 =-- 1:t5(,n+l + 71n l(Un + kn ) 

k 

Expansion of this yields 

Z (?'k~1 + Ql-Q - 11)(Un+l + Unk-+ Uk) 

=-4h2 Z(? ~ + 1)(Un + _n I 1 -n _ U2nU) 
k 

+ 4h2 1(,nl + 1I )(Un~ + n- n n 1) 
k 

k 
where we put k - k - 1 to get the first sum. Thus, 

1 
E(,n1 + nn-1)[U3 +lUn + Ukn +2U ,n]2Un Un 

k 
1:(,nk + nn-1)[C52Ukn + Sun-li 

k 
41 (,nk + kn-1)[(,kn+l qn) + (,n _ n-I)i 

=_ 14h Z ((,n+1)2 _ (,n-1)2) 

Z ((,n+1)2 + (,nl)2)- ((,kn)2 + (7fn-1)2) 
4h k 4hk 
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Term I5 is summed once by parts, with the result 

I5 =-2 E (Uj+1 + - Uk- ) 
(52) h2E(k Ukk 

(IE(xk+l, t)2Ek+ - IE(xk tn)j2 + jEj j2 
and further expansion yields 

I5=2h ReZ: (3Uk + 6Uk 
k 

* [(E(Xk+l, 0)-Ekn+l) (E(Xk+l, t) + ) 

-(E(xk, tn) - Ekn) (E(Xk, tn) + En)] 

2h ReE (3Uk, + 3Uk,') 
k 

* [ejn (E(Xk+l , tn) + -k+ ekn (E(Xk, tn) + En)] 

__1 

(53) =-2ReZ(U k + ) [(e2+i-ek)(E(xk+l, 0t)+E + ) 
k 

+ek (E(xk+l, t)-E(Xk, ) +k+ - Ek)] 

= o (Z 16Uk| + J3Uk 1)(dek|I + IekI(cT + 3EkI))) 

= o(h-l(gn + gn-1) + h- lienjK (gn + 'n-1)1/2I6En 112) 

=O(h-1(en + gfn-1)) 

by the Sobolev inequality applied to Ile njj0. 
Lastly, for the term I, we note from (31) that 

2Uk -t I 1 n+h fl - k(1nf - q1)) - +1- 2?7, + n- 

and hence 

(54) Il = 2h (Un + U, 1)32(Un _-I 
k 

Summing by parts we get 

(55)~ ~ 2II [Uk I + Ukn+I -Uk Uk] 
k 

[Ukl-I - -U -Uk )], 
This can be rewritten as 

(56) Ii = -Ah x [(3ukn)2 - (3nU1)2] =-2[IUIUnI1 - 11Un"1112]. 

Returning now to (50), we multiply it by h2 to get 
11 Un 112 +.1116Un- 1112 

(57) - (jj1fn+l 112 + jjtn 112) +I (KIIn I12 + lln- l 112) 

=O(h(gn + gn-l) + h5). 
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This completes the proof. 01 

Proof of Theorem 2. Let us define h = At = Ax and 

(58) Hn-1 = Ijleenf112 + ijidUn-1112j + i(11jnjl12 + ii n-1l2). 
Recall the definitions of the terms Ifn, IIIn from Lemma 9. Adding the con- 
clusions of Lemmas 9 and 10, we get 

(59) 
Hn + h(IIn + IIIn) = Hn-1 + h(IIn-1 + IIIn-1) 

+ 0(h(gtn + gn-l ) + h3) 

where, from (33), 

(60) gpn = I llen+1 1122 + Hn. 

Now, for a (large) positive constant y (to be chosen below) set 

(61) 8n y Ilen~1 IIn + Hn + h(IIn + IIPn). 

From (59) and Lemma 6 it follows that 

(62) e < y(l + ch)lien112 + yCTh5 + cyh(jj n+ 11j2 + jj nf112) 

+ Hn-1 + h(IIn-1 + IIIn-) + O(h(gn + gn-l) + h3). 

Now we estimate IIn, IIIn easily by 

hjIIn| = |ReE (E(xk, tn) + E(Xk, tnkl))( 71 + ?kn)ekn+l 
k 

(63) < c(llE(tn)lj0 + IIE(tn+l)lloo)llqn+l + ?7n 1121en+1 112 

1 (11,n+iII2 + 11,nil22) +nC|1 112 

(with a constant c depending only on the data), and 

h|III| < | k 

k 

? cjjen+1 11oo Ilyn+1 + Nn 1121en+1 112 

? c(IINn+1 112 + llNn 112) llen+I 1ll32 lljen+i 11 1/2 

by the Sobolev inequality. Since the first factor is bounded by Lemma 3, we 
obtain 

(64) hIIIIn ? <I jIden+1 112 + cllen+i 112 
with c depending only on the data. Adding (63) to (64), we obtain 

h(lIIn I + IIIIn 1) < I 
jIIen+1 112 + i(11 n+1 112 + 11 n 112) + cIjen+1 112 

(65) < Hn + cllen+1 112 

by the definition (58) of Hn. It follows that gn is strictly positive for a 
sufficiently large choice of y, depending only on the data. 

In fact, we can choose y large enough so that y > 1 and 

(66) gn > lie 112 + Hn 
e l2+H 
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with a constant c > 0 depending only on the data and on y. 
Hence, from (62), 

(67) 'n <gn-l + CTyh(gn + gn-1) + cTyh3. 

Now from its definition, we have, since y > 1, 
(68) g~n = I jjen+1 112 + Hn < yljen+1 112 + Hn 

= (n - h(IIn + IIIn) < gn + IHn + cIje'n+ 112 

where we have used (65). Since Hn < gn by (60), we conclude that 

(69) 3gn < gn + cIlen+112 < C? g'n 

in view of (66). For any such (fixed) choice of y, we obtain from (67) 

(1 -CTh)gn < (1 + CTh)gn + CTh3. 

It follows that for h = At = Ax sufficiently small, depending only on T and 
the data, we have 

gn < CT[W0 + h2]. 

Since (fn)1/2 is equivalent to (fn)1/2, the first part of the proof is complete. 
It remains to estimate g'o. From (29), (30) and (9), (10) we have 

eo = ? no = ? nk = O(h2). 

Thus, jjI112 + IIqo112 = O(h4). From Lemma 6 with n = 0, Ile 112 - O(h5), 
and hence 

J J 

IIe1II2 = h-l Z Iek1+ - ej2 < 4h-1 E IekI2 = 0(h3). 
k=1 k=1 

Finally, we bound 11 6UknII2 . We multiply the definition of Ukn by Ukn, sum 
over k, and then sum by parts to get 

J1 J-1J-1 

?112 UI = -E~ Uk2(k14 - ) = E G(xk, xj)tkl,), 
k=1 k=i j=l 

where we have used Lemma 4 again. Since G is continuous, it follows from 
general considerations (or from explicit computation, using kI = 0(h2)) that 
the last expression is O(h2), and this completes the proof. o 
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